
IIT KHARAGPUR

NEXT STOP

TECHNICAL
PARTNERS

SPONSORED BY:

NAMASTE ARBITRUM 2.0

BUILD WITHBUILD WITH
STYLUSSTYLUS
A PRACTICAL GUIDEA PRACTICAL GUIDE

TO GETTING STARTEDTO GETTING STARTED

Namaste
Arbitrum |

https://x.com/NamasteArbitrum
https://www.linkedin.com/company/pyorxyz/
https://www.instagram.com/pyorxyz/
https://www.youtube.com/@pyorxyz

02 | Build with Stylus: Rust Edition Namaste
Arbitrum |

Table of Contents

03 Introduction

06 Build With Stylus : Go SDK

10 Build with Stylus: C/C++ SDK

16 Build with Stylus: Rust Edition

28 Arbitrum + Stylus Resources

30 About Namaste Arbitrum & Web3 Compass

Namaste
Arbitrum

Introduction

Stylus lets you write smart contracts in programming languages that compile to WASM, such

as Rust, C, C++, and many others allowing you to tap into their ecosystem of libraries and

tools. Rich language and tooling support already exist for Rust.

Solidity contracts and Stylus contracts are fully interoperable. In Solidity, you can call a Rust

program and vice versa, thanks to a second, coequal WASM virtual machine.

Stylus contracts offer significantly faster execution and lower gas fees for memory- and

compute-intensive operations, thanks to the superior efficiency of WASM programs.

What's Stylus?
Stylus is an upgrade to Arbitrum Nitro (ArbOS 32), the tech stack powering Arbitrum One,

Arbitrum Nova, and Arbitrum chains. This upgrade adds a second, coequal virtual machine to

the EVM, where EVM contracts continue to behave exactly as they would in Ethereum. We

call this paradigm MultiVM, since everything is entirely additive.

03 | Build with Stylus: Rust Edition

This is EVM

Solidity

EVM Bytecode

Arbitrum Nitro

EVM

Smart Contract

Smart Contract

Smart Contract

This is MultiEVM

Arbitrum Nitro

Smart Contract

Smart Contract

Smart Contract

Solidity

EVM Bytecode WASM

Rust C++ C

WASM VMEVM

04 | Build with Stylus: Rust Edition Namaste
Arbitrum |

Stylus gives you MultiVM
This second virtual machine executes WebAssembly (WASM) rather than EVM bytecode.

WASM is a modern binary format popularized by its use in major web standards, browsers,

and companies to speed up computation. WASM is built to be fast, portable, and human-

readable. It has sandboxed execution environments for security and simplicity.

Working with WASM is nothing new for Arbitrum chains. Ever since the Nitro upgrade, WASM

has been a fundamental component of Arbitrum's fully functioning fraud proofs.

With a WASM VM, any programming language compilable to WASM is within Stylus's scope.

While many popular programming languages can compile into WASM, some compilers are

more suitable for smart contract development than others — like Rust, C, and C++. Other

languages like Go, Sway, Move, and Cairo are also supported.

Languages that include their own runtimes, like Python and Javascript, are more complex for

Stylus to support, although not impossible.

Compared to Solidity, WASM programs are much more efficient for memory-intensive

applications. There are many reasons for this, including the decades of compiler

development for Rust and C. WASM also has a faster runtime than the EVM, resulting in

faster execution.

Use Cases
While many developers will be drawn to new use cases, rebuilding existing applications in

Stylus will also open the door to innovation and optimization. dApps have never been faster,

cheaper, or safer.

Stylus can integrate easily into existing Solidity projects by calling a Stylus contract to

optimize specific parts of your dApp or building the entire dApp with Stylus.

It’s impossible to list all of the use cases Stylus enables; think about the properties of all

WASM-compatible languages! That said, here are some particularly exciting ideas:

05 | Build with Stylus: Rust Edition Namaste
Arbitrum |

Enable cost-effective onchain verification using zero-

knowledge proving systems for privacy, interoperability,

and more (see case study).

1. Efficient Onchain
Verification with
ZK-Proofs:

Power complex financial instruments and processes like

custom pricing curves for AMMs, synthetic assets,

options, and futures with onchain computation — via

extending current protocols (i.e., Uniswap V4 hooks) or

building your own.

2. Advanced DeFi
Instruments:

Support memory- and compute-intensive applications

like onchain games and generative art — either by

writing all of the application in Stylus or enhancing

performance of existing Solidity contracts by optimizing

specific parts.

3. High-Performance
Onchain Logic:

Enable innovative use cases such as generative art,

compute-heavy AI models, onchain games, and projects

utilizing advanced cryptography — unlocking the full

potential of resource-intensive applications onchain.

4. Endless
Possibilities:

Use Cases

Namaste
Arbitrum

Build With Stylus : Go SDK

Welcome to another installment of Build with Stylus! And today we’re stepping into

uncharted territory: writing smart contracts in Go on Arbitrum Stylus.

Yes, Go — the language of Kubernetes, Docker, and modern backend infra — is making its

first steps into the smart contract world, thanks to Stylus and an experimental SDK.

Let’s dive in.

Stylus: A Recap
With the Nitro upgrade, Arbitrum switched to a WebAssembly (WASM) execution

environment. That paved the way for Stylus, which allows smart contracts to be written in:

Rust

C / C++

Go (via TinyGo)

This unlocks powerful new workflows and lets builders use familiar tools, better memory

control, and massive performance improvements over Solidity.

Why Go?
Go wasn’t originally built for WebAssembly. It has:

A garbage collector

A full runtime

Rich abstractions like goroutines and schedulers

Great for web servers, not so great for deterministic WASM execution.

But thanks to TinyGo — a slimmed-down Go compiler for microcontrollers and WASM — we

now have a path.

Enter TinyGo
TinyGo compiles Go to WASM by stripping away much of the runtime. This makes it small and

predictable enough to run in Stylus.

TinyGo GitHub: https://github.com/tinygo-org/tinygo

Installation: https://tinygo.org/getting-started/

06 | Build with Stylus: Rust Edition

https://tinygo.org/
https://github.com/tinygo-org/tinygo
https://tinygo.org/getting-started/

07 | Build with Stylus: Rust Edition Namaste
Arbitrum |

Example install on macOS

brew tap tinygo-org/tools

brew install tinygo

The Go SDK (Proof of Concept)
A community-built SDK gives us a glimpse of what Go-based smart contracts might look like:

Repo: https://github.com/af-afk/stylus

Codegen Tool: https://github.com/af-afk/stylus/blob/trunk/cmd/stylus-go/main.go

package main

import (

 "math/big"

 "github.com/af-afk/stylus"

)

//stylus entrypoint

type Storage struct {

 Counter stylus.StorageUint256

}

func (s Storage) Add(x *big.Int) ([]byte, error) {

 y := s.Counter.Get()

 y.Add(y, x)

 s.Counter.Set(y)

 var b [32]byte

 x.FillBytes(b[:])

 return b[:], nil

}

Sample Contract (Counter)

https://github.com/af-afk/stylus
https://github.com/af-afk/stylus/blob/trunk/cmd/stylus-go/main.go

08 | Build with Stylus: Rust Edition Namaste
Arbitrum |

Codegen Strategy
Uses comments like //stylus entrypoint to identify the main struct

Uses //stylus uint256 to define argument types

Generates an entrypoint from Go AST

Similar in spirit to gqlgen, the codegen tool parses Go files and emits WASM-

compatible function wrappers.

Gotchas and Limitations
Not ready for production (no deployment path yet)

Lacks ABI support and official docs

Go runtime support is limited (e.g. no goroutines)

Reflection doesn’t work in TinyGo

But the proof-of-concept works, and it shows Go contracts can eventually:

Manage storage

Encode data

Return bytes + handle errors

A Glimpse of the Future
The Stylus community is already buzzing:

Three major audited dApps are in progress using this model

A gas optimization competition is planned

A Stylus Developer DAO is forming

Join the unofficial Stylus Dev Discord: https://discord.gg/eTRt3r3F

This whole Go journey is still experimental. But Stylus is proving that:

WebAssembly opens doors to multiple languages

Go developers are not locked out of Web3

Smart contracts don’t need to be Solidity-only anymore

Resources
Stylus Go SDK (POC): https://github.com/af-afk/stylus

TinyGo Compiler: https://tinygo.org/

Arbitrum Stylus Docs: https://docs.arbitrum.io/stylus

Stylus Community Blog: https://0xys.substack.com/

https://github.com/af-afk/stylus
https://tinygo.org/
https://docs.arbitrum.io/stylus
https://0xys.substack.com/

Namaste
Arbitrum |

Ep#1 Intro to Ethereum & Arbitrum
In this episode, we set the stage by diving deep into the journey of Ethereum, the limitations it faced, and how

Layer2 solutions like Arbitrum stepped in to scale the ecosystem without compromising on decentralization.

Ep#4 Stylus Go SDK: Exploring Smart Contracts in Go on Stylus
In the final episode of Build with Stylus (Go Edition), we explore the experimental Go SDK for Arbitrum Stylus, a

unique blend of theory and hands-on tinkering.

Ep#2 The Birth of Stylus: Arbitrum’s Leap Beyond EVM Limits
In this episode, we go beyond Ethereum’s limits and explore what makes Stylus on Arbitrum such a game-changer

for C, Rust and other developers.

Ep#3 How Stylus Works Under the Hood on Arbitrum
In this episode, we unpack how Stylus compiles, executes, and seamlessly interoperates with Solidity on Arbitrum.

Dive into the engine room of Stylus and see how it runs C, Go, and Rust natively on Arbitrum.

09 | Build with Stylus: Rust Edition

Go on Stylus is still rough around the edges, but it’s a spark.

It shows us that the future of onchain programming isn’t limited to Solidity, or even Rust. With

the right tooling, any modern language can find its way to the blockchain.

Let’s build.

Build with Stylus: Go Edition

https://youtu.be/9_7Yck4Whts
https://youtu.be/9_7Yck4Whts
https://youtu.be/9_7Yck4Whts
https://youtu.be/KxmepdI-02c
https://youtu.be/yvJe43QVO6A
https://youtu.be/n8CIbdILCCY
https://youtu.be/n8CIbdILCCY
https://youtu.be/n8CIbdILCCY
https://youtu.be/KxmepdI-02c
https://youtu.be/KxmepdI-02c
https://youtu.be/yvJe43QVO6A
https://youtu.be/yvJe43QVO6A

Namaste
Arbitrum

Build with Stylus: C/C++ SDK

Welcome to the Build with Stylus series — where we explore how to take the languages you

already know, like C and C++ and bring them onchain using Arbitrum Stylus.

This guide is your companion to the video walkthrough. We’ll cover everything from:

What Stylus is and why it matters

How C/C++ compiles to WebAssembly (WASM)

What’s inside the SDK

How to build real contracts using familiar toolchains

And how to get started locally — today

Let’s go.

10 | Build with Stylus: Rust Edition

Why Stylus?
Let’s start with the big picture.

Traditionally, if you wanted to build on Ethereum, you had to use Solidity — a domain-

specific language purpose-built for the Ethereum Virtual Machine (EVM). It works — but it’s

also limited. Performance bottlenecks, gas inefficiency, weird syntax quirks — you know the

drill.

Then came Arbitrum Nitro — a major upgrade that rebuilt Arbitrum’s execution layer around

WebAssembly (WASM), a modern binary format used across browsers, blockchains, and

beyond.

This upgrade unlocked a new environment called Stylus.

What is Stylus?
Stylus is a WASM-based smart contract runtime on Arbitrum. It allows developers to write

smart contracts in popular languages like:

Rust

C and C++

(and eventually more)

These contracts are compiled into WASM binaries, which are then executed side by side with

Solidity contracts — sharing the same storage, the same chain, but using a faster and

cheaper engine.

Stylus doesn’t replace Solidity — it extends what’s possible. You can mix and match: write

high-performance logic in C, and your interface in Solidity. It’s all interoperable.

11 | Build with Stylus: Rust Edition Namaste
Arbitrum |

Why C and C++?
If you’re a systems programmer, embedded dev, or game developer, you probably already

speak C or C++. But even beyond familiarity, these languages bring unique strengths:

Low-level memory control

High execution speed

Tons of audited libraries you can repurpose

Ideal for compute-heavy use cases like cryptography, compression, and encoding

Stylus makes it possible to bring that power onchain and that’s huge.

The Stylus C SDK
Repo: github.com/OffchainLabs/stylus-sdk-c

This SDK is your sandbox. It’s not polished or production-ready yet — but it works, and it

proves what’s possible.

Here’s what you’ll find inside:

A minimal set of C headers for interacting with Stylus

Utilities for:

Defining entry points

Reading/writing storage

Managing memory

A few replacements for standard libraries like stdlib.h and string.h

Two working examples:

A SipHash hasher

A bare-metal ERC-20 token

A Quick Peek at the Examples
1. SipHash Contract
This is a pure compute contract. It takes two inputs, runs a SipHash algorithm, and returns a

digest. That’s it.

No storage

No logs

No Solidity ABI required

Just raw math at blazing speed

Why it’s cool:

The .wasm output is only 609 bytes — and hashing a 32-byte input costs just 22 gas. That’s

unheard of in Solidity.

https://github.com/OffchainLabs/stylus-sdk-c

12 | Build with Stylus: Rust Edition Namaste
Arbitrum |

cd examples/siphash

make

This gives you siphash.wasm ready to deploy.

2. ERC-20 in C
This is where things get wild.

This contract manually implements an ERC-20 token — no OpenZeppelin, no shortcuts.

Calculates its own storage slots

Tracks balances and allowances

Does all memory and byte handling from scratch

This is “bare-metal” smart contract development. Not recommended for your production

launch... but incredibly educational.

cd ../erc20

make

You’ll end up with erc20.wasm — a fully functioning token written in C.

Setting Up Your Environment
Now, let’s talk about the tools you need to make this all work.

1. LLVM — The Compiler Backbone
LLVM (Low Level Virtual Machine) is an open-source compiler infrastructure that helps you

convert C/C++ code into all kinds of formats — including WebAssembly.

You’ll be using the clang compiler and wasm-ld linker from the LLVM suite.

You need:
LLVM version 14

clang must support -target=wasm32

wasm-ld must be available for linking .wasm

13 | Build with Stylus: Rust Edition Namaste
Arbitrum |

Ubuntu (recommended via PPA or source):

sudo apt install llvm-14 clang-14 lld-14

macOS:

brew install llvm@14

Run clang --version to confirm you're on version 14.

2. WebAssembly Binary Toolkit (WABT)
This is a set of tools to inspect, debug, and convert WASM files. Super useful for seeing

what’s going on under the hood.

Key tools:

 wasm-objdump : Inspect your compiled .wasm for functions and memory layout

 wasm2wat : Convert WASM binary to human-readable WAT format

 wat2wasm : Convert back from WAT to WASM

Example:

wasm-objdump -x siphash.wasm wasm2wat

siphash.wasm -o siphash.wat

3. cargo stylus — Your Deployment Companion
Even though we’re writing C/C++, Stylus tooling is still part of the Rust ecosystem.

You’ll use cargo-stylus to:

Generate Stylus project scaffolds

Deploy .wasm contracts

Simulate and test them locally

Install with:

 cargo install --git <https://github.com/OffchainLabs/stylus> stylus

This tool will handle deployment to local or test networks when you’re ready.

Full docs: Stylus GitHub

14 | Build with Stylus: Rust Edition Namaste
Arbitrum |

What to Expect (and What Not To)
What Works:

Writing real smart contracts in C

Interacting with blockchain state

Blazing-fast compute logic

Full WASM support

What’s Missing:
No automatic ABI decoding — you’ll do this manually via pointer math

No logging or events yet

Documentation is minimal — treat the examples as your guide

No polished tooling — but that’s improving fast

This is early-stage territory. But if you’re comfortable with memory layouts, bytes, and stack

traces — you’ll feel right at home.

Final Thoughts
If you’re a C/C++ dev who’s been curious about Web3 but didn’t want to mess with Solidity —

Stylus is your door in.

And if you’re a Solidity dev? This isn’t a replacement. It’s an upgrade. Stylus lets you move

your heavy compute logic into lean, hyper-efficient WASM programs — while keeping

everything interoperable.

So yes, this is still experimental.

But it’s real. It works. And it’s going to keep getting better.

Useful Links
Stylus C SDK Repo: github.com/OffchainLabs/stylus-sdk-c

Stylus CLI / cargo-stylus: github.com/OffchainLabs/stylus

Stylus Official Docs: docs.arbitrum.io/stylus

WebAssembly Binary Toolkit (WABT): github.com/WebAssembly/wabt

LLVM: https://llvm.org/

https://github.com/OffchainLabs/stylus-sdk-c
https://github.com/OffchainLabs/stylus
http://docs.arbitrum.io/stylus
https://github.com/WebAssembly/wabt
https://llvm.org/

Namaste
Arbitrum |15 | Build with Stylus: Rust Edition

Ep#1 Intro to Ethereum & Arbitrum
In this episode, we set the stage by diving deep into the journey of Ethereum, the limitations it faced, and how

Layer2 solutions like Arbitrum stepped in to scale the ecosystem without compromising on decentralization.

Ep#4 Running C & C++ on Arbitrum Stylus: What’s Possible Today
In this episode, we explore how C and C++ smart contracts are becoming possible on Arbitrum through Stylus and

why that matters.

Ep#2 The Birth of Stylus: Arbitrum’s Leap Beyond EVM Limits
In this episode, we go beyond Ethereum’s limits and explore what makes Stylus on Arbitrum such a game-changer

for C, Rust and other developers.

Ep#3 How Stylus Works Under the Hood on Arbitrum
In this episode, we unpack how Stylus compiles, executes, and seamlessly interoperates with Solidity on Arbitrum.

Dive into the engine room of Stylus and see how it runs C, Go, and Rust natively on Arbitrum.

Build with Stylus: C/C++ Edition

Ep#5 Getting Real with Stylus C SDK: A Builder’s Walkthrough
In the final episode of Build with Stylus (C/C++ Edition), we roll up our sleeves and dive into the actual Stylus C/C++

SDK created by Offchain Labs to see what it can (and can’t) do today.

https://youtu.be/4H2gu-RI__Q
https://youtu.be/xICIzmPBJvw
https://youtu.be/_jQQSM7lo80
https://youtu.be/40yB5WM9oYg
https://youtu.be/0GsyWgPUOnc
https://youtu.be/4H2gu-RI__Q
https://youtu.be/4H2gu-RI__Q
https://youtu.be/40yB5WM9oYg
https://youtu.be/40yB5WM9oYg
https://youtu.be/xICIzmPBJvw
https://youtu.be/xICIzmPBJvw
https://youtu.be/_jQQSM7lo80
https://youtu.be/_jQQSM7lo80
https://youtu.be/0GsyWgPUOnc
https://youtu.be/0GsyWgPUOnc

Namaste
Arbitrum

Build with Stylus: Rust Edition

16 | Build with Stylus: Rust Edition

Github Repo of the project: ArbitrumStylus_RUST​

Step 1: Set Up Your Development Environment
Prerequisites:

Install the Rust toolchain (v1.81 or newer)

 Go to: https://www.rust-lang.org/tools/install

 After installing, verify:

rustup --version

rustc --version

cargo --version

Install Docker

 Required for running the Nitro devnode and Stylus checks.

 Download from: https://www.docker.comInstall Foundry's Cast CLI

curl -L <https://foundry.paradigm.xyz> | bash foundryup

Recommended IDE: VS Code

 Helpful extensions for Rust development:

 rust-analyzer – smart completion, diagnostics

 Error Lens – highlights errors inline

 Even Better TOML – better syntax for

 Cargo.toml – Manage Rust crates in the editor

Step 2: Run the Nitro Devnode (Local Arbitrum Chain)
Stylus contracts run on Arbitrum — you’ll use a local devnode with a pre-funded test wallet.

https://github.com/snehasharma76/ArbitrumStylus_RUST
https://www.rust-lang.org/tools/install
https://www.docker.com/

17 | Build with Stylus: Rust Edition Namaste
Arbitrum |

git clone <https://github.com/OffchainLabs/nitro-devnode.git>

cd nitro-devnode

./run-dev-node.sh

Ensure Docker is running before executing the above.

This will start a local chain at <http://localhost:8547>.

Step 3: Install and Set Up Cargo Stylus

Install the CLI:

cargo install --force cargo-stylus

Set Rust toolchain and WASM target:

rustup default 1.80

rustup target add wasm32-unknown-unknown --toolchain 1.80

rustup target add wasm32-unknown-unknown (in case there is an error)

Confirm installation:

cargo stylus --help

This shows available commands like:

new , check , deploy, verify, trace , etc.

18 | Build with Stylus: Rust Edition Namaste
Arbitrum |

Step 4: Create a Stylus Project

cargo stylus new my-counter

cd my-counter

#This generates a Rust-based implementation of a basic Solidity

Counter contract:

#The Rust version will be inside your new project folder — ready to

customize.

Step 5: Check If the Contract Is Valid

#Ensure Docker is running, then validate the contract with:

cargo stylus check

Step 6: Estimate Gas for Deployment

Use the pre-funded dev wallet provided by the Nitro devnode:

cargo stylus deploy --endpoint='<http://localhost:8547>' \\

--private-

key="0xb6b15c8cb491557369f3c7d2c287b053eb229daa9c2213888775

2191c9520659" \\

--estimate-gas

#Output

You should see something like:

deployment tx gas: 7123737

gas price: "0.100000000" gwei

deployment tx total cost: "0.000712373700000000" ETH

Namaste
Arbitrum |

Step 7: Deploy the Contract

Run the deployment (this includes deployment + activation):

cargo stylus deploy --endpoint='<http://localhost:8547>' \\

--private-

key="0xb6b15c8cb491557369f3c7d2c2c87b053eb229daa9c221388877

52191c9520659" \\

#On success:

deployed code at address:

0x33f54de59419570a9442e788f5dd5cf635b3c7ac

deployment tx hash:

0xa55efc05c45efc63647dff5cc37ad328a47ba5555009d92ad4e297bf

4864de36

#wasm already activated!Save that address — you’ll need it to interact

with your contract.

19 | Build with Stylus: Rust Edition

This guide walks you through building a complete, production-grade ERC-20 token smart

contract in Rust using Arbitrum Stylus, a WASM-based contract engine that lets you write

smart contracts in languages beyond Solidity.

You’ll learn:

How to scaffold a Stylus Rust project

How to write a modular ERC-20 smart contract in Rust

How to define your own token (CandyToken)

How to use Stylus primitives and tooling

How to prepare for deployment & frontend integration

Namaste
Arbitrum |20 | Build with Stylus: Rust Edition

Tool Purpose

rustup Manages the Rust toolchain

cargo Rust’s package manager & build tool

Node.js + Yarn/NPM For frontend setup (optional later)

Stylus CLI Scaffolding & compiling Stylus apps

Tools & Setup
Prerequisites
Make sure you have the following set up:

Install the Stylus CLI

cargo install stylus-cli --locked

Stylus CLI helps you quickly spin up new Stylus-compatible smart contract projects.

Create a New Stylus Project

cargo stylus new mini-token-dapp

cd mini-token-dapp

This generates:

css

CopyEdit

mini-token-dapp/

├── Cargo.toml

├── rust-toolchain.toml

├── src/

│ ├── main.rs

│ └── lib.rs

├── examples/

│ └── counter.rs

├── README.md

├── header.png

21 | Build with Stylus: Rust Edition

Cargo.toml — your project manifest

main.rs — mostly boilerplate; used for testing or deployments

lib.rs — your contract entry point

erc20.rs — we’ll add this to house reusable logic

counter.rs — a simple example you can delete

Namaste
Arbitrum |

Project Structure Overview

File Purpose

erc20.rs Reusable, generic ERC-20 implementation (mint, burn, transfer)

lib.rs Your token config + entrypoint (CandyToken)

We’ll be splitting logic into two parts:

Contract Breakdown
 src/erc20.rs : Generic ERC-20 Logic

This file is a reusable, type-safe ERC-20 engine in Rust.

Imports

extern crate alloc;

use alloc::string::String;

use alloy_primitives::{Address, U256};

use alloy_sol_types::sol;

use core::marker::PhantomData;

use stylus_sdk::{prelude::*, stylus_core::log};

 alloc is required for WASM (no std)

 Address and U256 come from Alloy (Ethereum-native types)

 PhantomData Let us use type-based configuration safely

 Stylus SDK powers contract interaction and bindings

22 | Build with Stylus: Rust Edition Namaste
Arbitrum |

ERC-20 Config Trait

pub trait Erc20Params {

 const NAME: &'static str;

 const SYMBOL: &'static str;

 const DECIMALS: u8;

}

Tokens implement this trait to define their identity (name, symbol, decimals). This lets us

reuse the contract logic for any ERC-20.

Storage Layout

 sol_storage! {

 pub struct Erc20<T> {

 mapping(address => uint256) balances;

 mapping(address => mapping(address => uint256)) allowances;

 uint256 total_supply;

 PhantomData<T> phantom;

 }

}

Modeled after Solidity’s mapping

Fully type-safe, with the sol_storage! macro provided by Stylus SDK

PhantomData<T> connects the storage type to the trait config

23 | Build with Stylus: Rust Edition Namaste
Arbitrum |

Events & Errors

 sol! {

 event Transfer(address indexed from, address indexed to, uint256

value);

 event Approval(address indexed owner, address indexed spender,

uint256 value);

 error InsufficientBalance(address from, uint256 have, uint256 want);

 error InsufficientAllowance(address owner, address spender, uint256

have, uint256 want);

}

This mirrors the standard ERC-20 interface, along with useful custom errors that provide

more visibility than generic reverts.

Internal Logic

impl<T: Erc20Params> Erc20<T> {

 pub fn _transfer(...) -> Result<(), Erc20Error> { ... }

 pub fn mint(...) -> Result<(), Erc20Error> { ... }

 pub fn burn(...) -> Result<(), Erc20Error> { ... }

}

Safe, auditable core logic for state changes — no require , just Result

24 | Build with Stylus: Rust Edition Namaste
Arbitrum |

Public Methods (ERC-20 Interface)

#[public]

impl<T: Erc20Params> Erc20<T> {

 pub fn name() -> String { ... }

 pub fn symbol() -> String { ... }

 pub fn decimals() -> u8 { ... }

 pub fn total_supply(&self) -> U256 { ... }

 pub fn balance_of(&self, owner: Address) -> U256 { ... }

 pub fn transfer(...) -> Result<bool, Erc20Error> { ... }

 pub fn transfer_from(...) -> Result<bool, Erc20Error> { ... }

 pub fn approve(...) -> bool { ... }

 pub fn allowance(...) -> U256 { ... }

}

These are the familiar ERC-20 functions exposed for external calls.

 src/lib.rs : CandyToken Definition

This is where we create a real token using the generic logic.

Imports & Module Linking

extern crate alloc;

mod erc20;

use alloy_primitives::{Address, U256};

use stylus_sdk::prelude::*;

use crate::erc20::{Erc20, Erc20Params, Erc20Error};

Define Token Metadata

struct CandyTokenParams;

impl Erc20Params for CandyTokenParams {

 const NAME: &'static str = "CandyToken";

 const SYMBOL: &'static str = "CANDY";

 const DECIMALS: u8 = 18;

}

25 | Build with Stylus: Rust Edition Namaste
Arbitrum |

Contract Storage & Entrypoint

sol_storage! {

 #[entrypoint]

 struct CandyToken {

 #[borrow]

 Erc20<CandyTokenParams> erc20;

 }

}

 #[entrypoint] : Stylus will compile this struct into the contract entry point

 #[borrow] : Enables erc20 to modify the contract’s storage directly

Public Functions

#[public]

#[inherit(Erc20<CandyTokenParams>)]

impl CandyToken {

 pub fn mint(...) -> Result<(), Erc20Error> { ... }

 pub fn mint_to(...) -> Result<(), Erc20Error> { ... }

 pub fn burn(...) -> Result<(), Erc20Error> { ... }

}

 #[inherit(...)] : Automatically exposes all ERC-20 methods

These methods add mint/burn access for wallets or admins

Resource Link

Arbitrum Stylus Docs https://docs.arbitrum.io/stylus

Stylus Example Contracts https://github.com/OffchainLabs/stylus-examples

Stylus SDK Crate https://crates.io/crates/stylus-sdk

Stylus CLI https://github.com/OffchainLabs/stylus-cli

Alloy Primitives https://docs.rs/alloy primitives/latest/alloy_primitives/

Arbitrum Dev Discord https://discord.gg/arbitrum

Helpful References

https://docs.arbitrum.io/stylus
https://github.com/OffchainLabs/stylus-examples
https://crates.io/crates/stylus-sdk
https://github.com/OffchainLabs/stylus-cli
https://docs.rs/alloy-primitives/latest/alloy_primitives/
https://discord.gg/arbitrum

26 | Build with Stylus: Rust Edition Namaste
Arbitrum |

Recap: Why Stylus + Rust?
Performance: WASM execution is fast, scalable, and cheaper than EVM

Tooling: Use familiar Rust tools like cargo , clippy , rust-analyzer

Safety: Strong type system, no silent reverts

Interoperability: Direct access to EVM-compatible types via Alloy

Next Steps
After writing your contract:

1. Build your project:

cargo stylus build

1. Deploy on a local devnet or testnet using Stylus deploy tools

2. Write a frontend to call methods like mint , transfer , burn

3. Extend functionality:

Access control (onlyOwner)

Pausable transfers

Metadata extensions

Helpful Resources to Learn Rust Language
https://doc.rust-lang.org/beta/book/

https://github.com/rust-lang/rustlings

https://www.rust-lang.org/learn

https://doc.rust-lang.org/beta/book/
https://github.com/rust-lang/rustlings
https://www.rust-lang.org/learn

Namaste
Arbitrum |

Ep#4 Deploy Your First Stylus Contract in Rust: Full Setup Tutorial
In this episode of Build with Stylus (Rust Edition), we go hands-on and walk you through setting up your full

development environment to start building with Stylus on Arbitrum.

Ep#5 Build an ERC-20 Token in Rust with Arbitrum Stylus
Complete backend implementation of a Candy Token, from setting up your development structure to understanding

Rust-based ERC20 logic like minting, transferring, allowances and more.

Ep#1 Intro to Ethereum & Arbitrum
In this episode, we set the stage by diving deep into the journey of Ethereum, the limitations it faced, and how

Layer2 solutions like Arbitrum stepped in to scale the ecosystem without compromising on decentralization.

Ep#2 The Birth of Stylus: Arbitrum’s Leap Beyond EVM Limits
In this episode, we go beyond Ethereum’s limits and explore what makes Stylus on Arbitrum such a game-changer

for C, Rust and other developers.

Ep#3 How Stylus Works Under the Hood on Arbitrum
In this episode, we unpack how Stylus compiles, executes, and seamlessly interoperates with Solidity on Arbitrum.

Dive into the engine room of Stylus and see how it runs C, Go, and Rust natively on Arbitrum.

Build with Stylus: Rust Edition

Ep#6 Build a Complete ERC-20 DApp in Rust with Arbitrum Stylus
In the final episode of Build with Stylus (Rust Edition), we bring everything together from smart contract to candy-

themed frontend!

27 | Build with Stylus: Rust Edition

https://youtu.be/FBfKMFV8QFg
https://youtu.be/RkQcoae6ilk
https://youtu.be/XVaZvevaQjw
https://youtu.be/TlShu2Pep9s
https://youtu.be/TlShu2Pep9s
https://youtu.be/TlShu2Pep9s
https://youtu.be/TlShu2Pep9s
https://youtu.be/TlShu2Pep9s
https://youtu.be/28CpV24t374
https://youtu.be/28CpV24t374
https://youtu.be/28CpV24t374
https://youtu.be/Arv1q2Yh4dI
https://youtu.be/FBfKMFV8QFg
https://youtu.be/FBfKMFV8QFg
https://youtu.be/FBfKMFV8QFg
https://youtu.be/RkQcoae6ilk
https://youtu.be/RkQcoae6ilk
https://youtu.be/RkQcoae6ilk
https://youtu.be/XVaZvevaQjw
https://youtu.be/XVaZvevaQjw
https://youtu.be/XVaZvevaQjw
https://youtu.be/Arv1q2Yh4dI
https://youtu.be/Arv1q2Yh4dI

Namaste
Arbitrum

Arbitrum + Stylus Resources

28 | Build with Stylus: Rust Edition

1. Awesome Stylus:
https://github.com/OffchainLabs/awesome-stylus

Repository for various community-contributed Stylus projects and tools

2. Quikstart
https://docs.arbitrum.io/stylus/quickstart

3. Rust SDK
https://docs.arbitrum.io/stylus/reference/overview

4. Stylus Saturdays
https://stylus-saturdays.com/

Stay updated with the latest from the Stylus community through tutorials, builder

interviews, technical deep dives, and more with the Stylus Saturdays newsletter.

5. Arbitrum Docs
https://docs.arbitrum.io/welcome/arbitrum-gentle-introduction

Build with Stylus - Rust Edition
In this 6-part series, you'll go end-to-end on building a DApp with Arbitrum Stylus + Rust.

Write an ERC-20 contract, deploy it, build a React frontend, and bring your Candy token to life—mint, transfer, and

celebrate in style.

Build with Stylus - C & C++ Edition
A hands-on dive into the Stylus C/C++ SDK by Offchain Labs. Learn how to set up your environment, compile C++ to

WebAssembly, explore example contracts, and debug your way through the wild world of Stylus dev. This 5-part

series is for builders who want to push the limits of Stylus using C/C++.

Build with Stylus - Go Edition
Explore what it takes to write smart contracts in Go for Arbitrum Stylus. From TinyGo setup to sample contracts, we

walk through the quirks, workarounds, and current limitations of building with Go on Stylus. This 4-part series

explores the experimental frontier of writing smart contracts in Go for Arbitrum Stylus.

Build with Stylus Tutorials

https://github.com/OffchainLabs/awesome-stylus
https://docs.arbitrum.io/stylus/quickstart
https://docs.arbitrum.io/stylus/reference/overview
https://stylus-saturdays.com/
https://docs.arbitrum.io/welcome/arbitrum-gentle-introduction
https://www.youtube.com/playlist?list=PLxVqmuG51ci3DlkCuoZAKw38Ax0WAB51z
https://www.youtube.com/playlist?list=PLxVqmuG51ci3DlkCuoZAKw38Ax0WAB51z
https://www.youtube.com/playlist?list=PLxVqmuG51ci3DlkCuoZAKw38Ax0WAB51z
https://www.youtube.com/playlist?list=PLxVqmuG51ci0f4l7G9sB5WjYW9QX4rjqb
https://www.youtube.com/playlist?list=PLxVqmuG51ci3ZbFmadzC5bKMdkIYsoeUj
https://www.youtube.com/playlist?list=PLxVqmuG51ci0f4l7G9sB5WjYW9QX4rjqb
https://www.youtube.com/playlist?list=PLxVqmuG51ci0f4l7G9sB5WjYW9QX4rjqb
https://www.youtube.com/playlist?list=PLxVqmuG51ci3ZbFmadzC5bKMdkIYsoeUj
https://www.youtube.com/playlist?list=PLxVqmuG51ci3DlkCuoZAKw38Ax0WAB51z

Namaste
Arbitrum |

Arbitrum in 60 Seconds
Everything you need to know about Arbitrum, in under a minute. Quick, clear, and to the point, Arbitrum in 60

Seconds breaks down key concepts, tools, and tech (including Stylus) in under a minute. Perfect for builders,

learners, and anyone curious about Ethereum’s leading L2.

Arbitrum in 60 Seconds

29 | Build with Stylus: Rust Edition

Namaste Arbitrum: 10-Part Series (Tamil Edition)
A beginner-friendly 10-part video series in Tamil covering everything from Ethereum and Arbitrum basics to scaling

solutions, wallet setup, and governance participation.

Namaste Arbitrum: 10-Part Series (Telugu Edition)
A beginner-friendly 10-part video series in Telugu covering everything from Ethereum and Arbitrum basics to scaling

solutions, wallet setup, and governance participation.

Namaste Arbitrum: 10-Part Series (English Edition)
A beginner-friendly 10-part video series in English covering everything from Ethereum and Arbitrum basics to scaling

solutions, wallet setup, and governance participation.

Namaste Arbitrum: 10-Part Series (Hindi Edition)
A beginner-friendly 10-part video series in Hindi covering everything from Ethereum and Arbitrum basics to scaling

solutions, wallet setup, and governance participation.

Namaste Arbitrum: 10-Part Series (Bengali Edition)
A beginner-friendly 10-part video series in Bengali covering everything from Ethereum and Arbitrum basics to scaling

solutions, wallet setup, and governance participation.

Namaste Arbitrum: A 10-Part Regional Series

Namaste Arbitrum: 10-Part Series (Gujarati Edition)
A beginner-friendly 10-part video series in Gujarati covering everything from Ethereum and Arbitrum basics to

scaling solutions, wallet setup, and governance participation.

https://www.youtube.com/playlist?list=PLxVqmuG51ci1oSH73n2a0-G380VrrVdGJ
https://www.youtube.com/playlist?list=PLxVqmuG51ci1oSH73n2a0-G380VrrVdGJ
https://www.youtube.com/playlist?list=PLxVqmuG51ci1oSH73n2a0-G380VrrVdGJ
https://www.youtube.com/playlist?list=PLxVqmuG51ci3uvJuZeQFngigDlnVX7t76
https://www.youtube.com/playlist?list=PLxVqmuG51ci1AHDW_erludjrbBKj0jhkS
https://www.youtube.com/playlist?list=PLxVqmuG51ci1gxYwAst4fnEjOG6dORF26
https://www.youtube.com/playlist?list=PLxVqmuG51ci3Ka026e_WaMv7-7YYJ1uJN
https://www.youtube.com/playlist?list=PLxVqmuG51ci0F4cwHNHDbSY0BZKlCPSrw
https://www.youtube.com/playlist?list=PLxVqmuG51ci2VEWhzCuMbqiTO_aDi9kOo
https://www.youtube.com/playlist?list=PLxVqmuG51ci3Ka026e_WaMv7-7YYJ1uJN
https://www.youtube.com/playlist?list=PLxVqmuG51ci3Ka026e_WaMv7-7YYJ1uJN
https://www.youtube.com/playlist?list=PLxVqmuG51ci3Ka026e_WaMv7-7YYJ1uJN
https://www.youtube.com/playlist?list=PLxVqmuG51ci0F4cwHNHDbSY0BZKlCPSrw
https://www.youtube.com/playlist?list=PLxVqmuG51ci0F4cwHNHDbSY0BZKlCPSrw
https://www.youtube.com/playlist?list=PLxVqmuG51ci3uvJuZeQFngigDlnVX7t76
https://www.youtube.com/playlist?list=PLxVqmuG51ci3uvJuZeQFngigDlnVX7t76
https://www.youtube.com/playlist?list=PLxVqmuG51ci3uvJuZeQFngigDlnVX7t76
https://www.youtube.com/playlist?list=PLxVqmuG51ci1AHDW_erludjrbBKj0jhkS
https://www.youtube.com/playlist?list=PLxVqmuG51ci1AHDW_erludjrbBKj0jhkS
https://www.youtube.com/playlist?list=PLxVqmuG51ci1AHDW_erludjrbBKj0jhkS
https://www.youtube.com/playlist?list=PLxVqmuG51ci1gxYwAst4fnEjOG6dORF26
https://www.youtube.com/playlist?list=PLxVqmuG51ci1gxYwAst4fnEjOG6dORF26
https://www.youtube.com/playlist?list=PLxVqmuG51ci1gxYwAst4fnEjOG6dORF26
https://www.youtube.com/playlist?list=PLxVqmuG51ci2VEWhzCuMbqiTO_aDi9kOo
https://www.youtube.com/playlist?list=PLxVqmuG51ci2VEWhzCuMbqiTO_aDi9kOo

Namaste
Arbitrum

About Us

30 | Build with Stylus: Rust Edition

About Us
This Practical Guide is brought to you by Namaste Arbitrum, a grassroots initiative

dedicated to growing the Arbitrum builder ecosystem in India through hands-on education,

technical content, and community-driven projects.

Created in collaboration with Web3 Compass, a platform designed by builders for builders,

this guide is part of our shared mission to help developers explore and master Web3 and AI

through practical, challenge-based learning.

For more tutorials, ecosystem updates, and dev resources, follow Namaste Arbitrum and

Web3 Compass.

Let’s build with Stylus.

Follow Namaste Arbitrum
X (Twitter): https://x.com/NamasteArbitrum

Instagram: https://www.instagram.com/pyorxyz/

LinkedIn: https://www.linkedin.com/company/pyorxyz

YouTube: https://www.youtube.com/@pyorxyz

Follow Web3 Compass
X (Twitter): https://x.com/the_web3compass

LinkedIn: https://www.linkedin.com/company/the-web3compass

Telegram: https://t.me/+Bmec234RB3M3YTll

YouTube: https://www.youtube.com/@TheWeb3Compass

Namaste
Arbitrum |

Join the Build with Stylus WhatsApp Group for More Dev Content

https://x.com/NamasteArbitrum
https://www.instagram.com/pyorxyz/
https://www.linkedin.com/company/pyorxyz
https://www.youtube.com/@pyorxyz
https://x.com/the_web3compass
https://www.linkedin.com/company/the-web3compass
https://t.me/+Bmec234RB3M3YTll
https://www.youtube.com/@TheWeb3Compass
https://chat.whatsapp.com/IX5FVuf79Ao22Eg84RPZtJ
https://chat.whatsapp.com/IX5FVuf79Ao22Eg84RPZtJ

